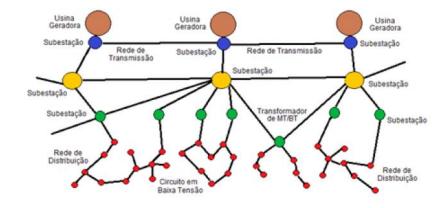
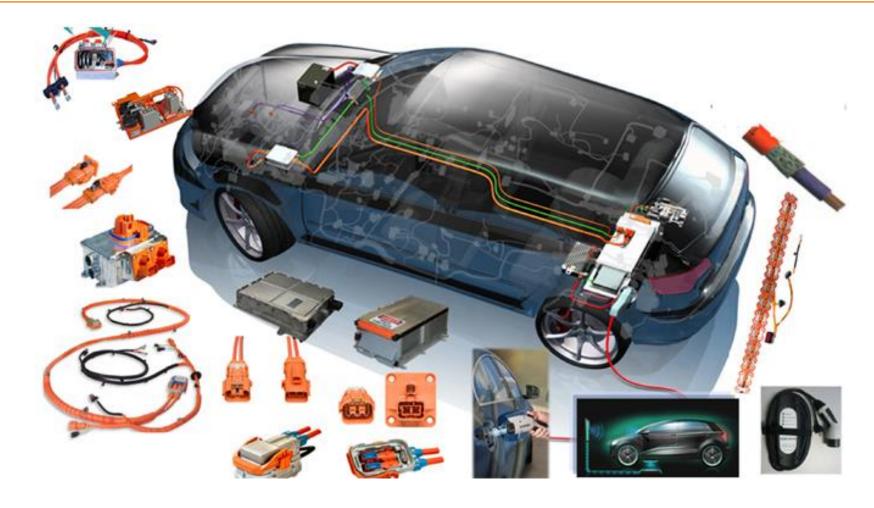

TEKMA - Workshop Eletromobilidade – 14 março 2024 Prevenção de Riscos


Geração

Distribuição de energia elétrica



Caminho percorrido pela energia elétrica desde a geração até chegar ao consumidor

https://www.neocharge.com.br/tudo-sobre/carro-eletrico/bateria-veiculo-eletrico https://www.automotivebusiness.com.br/pt/posts/noticias/muitos-cabos-vao-conduzir-a-eletrificacao-do-automovel/

https://www.4oito.com.br/noticia/quatro-cidades-da-regiao-sul-poderam-contar-com-estacoes-de-eletropostos-24936

A eletricidade e o estilo de vida

A eletricidade nos possibilitou um estilo de vida mais prático e tantos outros benefícios que, hoje em dia, é quase impossível imaginarmos viver sem ela

 Iluminamos os ambientes sem precisar queimar combustíveis fósseis.

 Nossas máquinas e equipamentos operam ininterruptamente sem necessidade de realimentação constante de combustível.

https://www.amosapatos.com.br/mulher-sapato-e-cerveja/ https://organicsnewsbrasil.com.br/negocio/veiculo-eletrico/porsche-apresenta-carro-eletrico-que-chega-a-200km-h/ https://www.mulherportuguesa.com/casa/decoracao-casa/uma-casa-iluminada/ https://www.frotacia.com.br/producao-de-caminhoes-cresce-15-em-outubro/

A eletricidade e o estilo de vida

A eletricidade nos possibilitou um estilo de vida mais prático e tantos outros benefícios que, hoje em dia, é quase impossível imaginarmos viver sem ela

• Os meios de condução movidos por eletricidade

 Conseguimos manter os alimentos conservados por muito mais tempo.

https://www.amosapatos.com.br/mulher-sapato-e-cerveja/ https://organicsnewsbrasil.com.br/negocio/veiculo-eletrico/porsche-apresenta-carro-eletrico-que-chega-a-200km-h/ https://www.uol.com.br/vivabem/noticias/redacao/2022/04/04/alimentos-tem-lugar-https://www.mulherportuguesa.com/casa/decoracao-casa/uma-casa-iluminada/ https://www.frotacia.com.br/producao-de-caminhoes-cresce-15-em-outubro/ certo-na-geladeira-onde-guardar-e-por-que-seguir-ordem.htm

Acidentes (e mortes) envolvendo eletricidade em 2022

Mortes 39

55

592

Acidentes 10

874

853

Acidentes por descargas Incêndios por sobrecarga de atmosféricas eneriga (curto-circuito) Acidentes com choque elétrico

 $https://abracopel.org/estatisticas/anuario-estatistico-de-acidentes-de-origem-eletrica-2022/? doing_wp_cron=1709472269.6727280616760253906250$

Gráfico 2 - Choques elétricos fatais por região do país

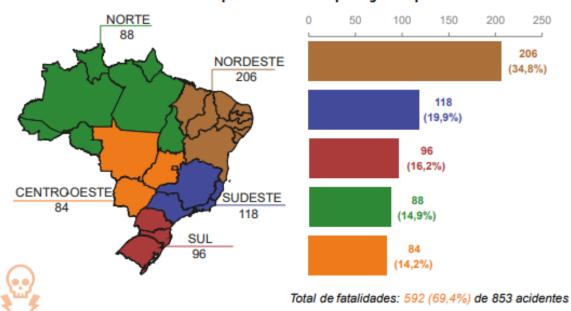
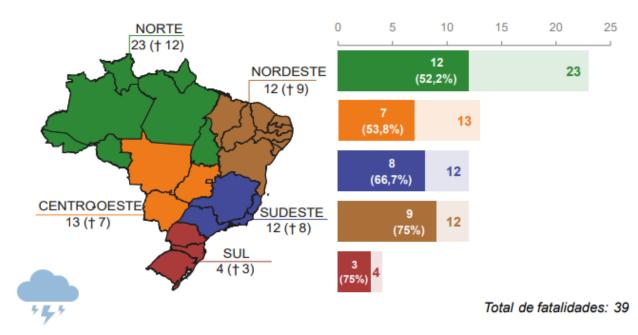



Gráfico 30 - Descargas atmosféricas (raios) por região 2022

O Gráfico 30 apresenta o número de acidentes e de mortes causados por descargas atmosféricas (raios) ocorridos em 2022, estratificados por regiões do Brasil.

https://abracopel.org/estatisticas/anuario-estatistico-de-acidentes-de-origem-eletrica-2022/?doing_wp_cron=1709472269.6727280616760253906250

Tabela 10 - Mortes por choque elétrico por profissão (geral) – Série histórica 2013-2022

		ANO								
Profissão	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Aposentado	34	25	39	40	33	50	44	26	22	26
Soldador, serralheiro, vidraceiro, marceneiro	0	15	9	21	10	7	6	9	11	4
Motorista (categorias D ou E)	0	2	24	20	14	16	25	17	19	25
Curioso ou criminoso	0	33	17	31	30	40	39	25	21	53
Produtor rural/Agricultor	0	0	56	90	72	105	82	80	52	48
Pintor ou ajudante	10	23	16	31	18	24	25	14	18	20
Pedreiro ou ajudante	55	60	58	71	67	37	40	58	38	34
Instalador de TV a cabo, telefonia placas, toldos ou calhas	20	20	17	39	10	13	18	31	24	15
Trabalhador doméstico, Dona de casa	72	41	33	40	37	56	37	38	36	20
Estudante	117	79	76	93	76	118	74	91	59	82
Eletricista profissional empresa	29	16	22	33	18	5	11	20	17	9
Eletricista ou técnico autônomo	71	54	61	59	45	57	69	44	31	31
Operário/funcionário	0	0	4	4	7	21	16	34	52	42
Comerciante/Vendedor	0	0	1	2	3	4	14	6	20	13
TOTAL	592	627	590	599	627	622	697	691	674	592

 $https://abracopel.org/estatisticas/anuario-estatistico-de-acidentes-de-origem-eletrica-2022/? doing_wp_cron=1709472269.6727280616760253906250$

Qual é o Tradicional e qual o Elétrico?

Parecidos! No entanto, ...

Estruturalmente diferentes ...

Ônibus Tradicional

Ônibus Elétrico

Qual dos dois lugares você passaria tranquilamente?:

Impacto nas oficinas (Conscientização)

Procedimentos dos serviços de emergência:

- Desativar;
- Desligar;
- Descarregar.

Equipamentos de Proteção Individual (EPI):

- Luvas isolantes de classe zero até 1.000V;
- Óculos de proteção/viseira;
- Luvas de raspa de couro;
- Sapatos isolantes;
- Capacete.

Equipamentos de Proteção Coletiva (EPC):

- Placas de advertências;
- Correntes de isolamento;
- Ganchos de resgate;
- Tapetes isolantes.

Normas Técnicas Oficiais

As mais utilizadas na área elétrica são:

- NBR 5410 Instalações Elétricas de Baixa Tensão
- NBR 14039 Instalações Elétricas de Média Tensão até 36,2kV
- NBR 5418 Instalações elétricas em atmosferas explosivas
- NBR 5419 Proteção Contra Descargas Elétricas Atmosféricas
- NBR 8674 Proteção contra Incêndios em Transformadores
- NBR 8222 e NBR 12232 Proteção contra incêndios

Normas Regulamentadoras

Conscientização e Treinamento

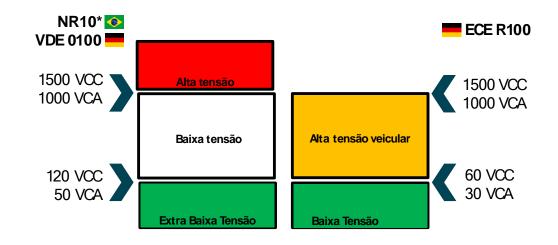
Como base, utilizamos além da NR10, o protocolo Alemão DGUV 209-093, Níveis de qualificação que são:

		3E	Pessoa qualificada para trabalhos em Componentes HV "vivo": Solução de problemas Substituir componentes energizados
Pessoas Especificas Manutenção		2E	Pessoa Qualificada (FHV) para trabalho em Sistemas de alta tensão em um estado livre de tensão.
Pessoas da Manutenção	\Rightarrow	1E	Pessoa altamente instruída (FuP): Trabalho geral
Do Presidente ao Faxineiro	\Rightarrow	E	Pessoa sensibilizada: © Operar veículos

Definição de níveis de tensão

Ref. NR10(2004)

(No Brasil a NR10 estabelece que baixa tensão é compreendida entre 120 e 1500 VCC, e 50 a 1000 VCA.


Ref. VDE 0100

Em corrente alternada a Baixa tensão é compreendida em tensões CA de 50V a 1000V.

Eem corrente contínua tensões de 120V a 1500V.

Ref. ECE R100(3/2011)

Um sistema de alta tensão veicular, em tecnologia veicular para sistemas que operam com CA acima de 30V a 1000V ou CC acima de 60V a 1500V.

NR 10 – Efeitos do Choque Elétrico

Relações entre percursos da corrente elétrica no corpo humano e a porcentagem de corrente que percorre a região do coração.

	Α	В	С	D	E
Figura					
Trajeto da corrente	Da cabeça para o pé direito	Da mão direita para o pé esquerdo	Da mão direita para a mão esquerda	Da cabeça para a mão esquerda	Do pé direito para o pé esquerdo
% de Corrente Elétrica que percorre o coração	9,7%	7,9%	1,8%	1,8%	0,01%

Faixa de Corrente	Reações Fisiológicas Habituais					
0,1 a 0,5 mA	Leve percepção superficial, habitualmente nenhum efeito.					
0,5 a 10 mA	Ligeira paralisia nos músculos do braço, cominício de tetanização; habitualmente nenhumefeito perigoso.					
10 a 30 mA	Nenhum efeito perigoso se houver interrupção em no máximo 200 milesegundos.					
30 a 500 mA	Paralisia estendida aos músculos do tórax, com sensação de falta de ar e tontura; possibilidade de fibrilação ventricular se a descarga elétrica se manifestar na fase crítica do ciclo cardíaco e por tempo superior a 200 milesegundos.					
Acima de 500 mA	Trauma cardíaco persistente; nesse caso o efeito é letal, salvo intervenção imediata de pessoal especializado comequipamento adequado.					

Muitos órgãos sadios só vão apresentar sintomas devido aos efeitos da corrente, muito tempo após ter ocorrido o choque elétrico. Esse tempo pode ser de alguns dias, meses e até anos. A isso damos o nome de efeitos retardados do choque elétrico e podemos citar como exemplos:

- Modificação da personalidade
- Amnésia
- Inércia mental
- Doenças circulatórias

- Destruição dos tecidos pancreáticos
- Catarata
- Doenças Cardiacas
- Perda de Potência Sexual

Os campos eletromagnéticos são linhas de força invisíveis (campo eletromagnético) que envolvem todos os dispositivos elétricos energizados, que são devido à indução, isto é, a corrente alternada passa por um condutor e produz um campo eletromagnético variável.

Se existirem outros condutores desenergizados nas suas imediações, será induzida neles uma corrente elétrica, dessa forma, existe o risco de ocorrer circulação de corrente elétrica em circuitos desenergizados próximos aos circuitos energizados

Os campos eletromagnéticos podem causar efeitos no corpo humano:

- 1. O campo elétrico provoca a formação de uma carga sobre a superficie da pele.
- 2. O campo magnético causa fluxo de correntes circulando em todo o corpo.

Normalmente, estes efeitos não são prejudiciais aos seres humanos, mas quando decorrentes de campos muito intensos, podem provocar disfunções em implantes eletrônicos (marca-passo e dosadores de insulina) e a circulação de correntes em próteses metálicas, a ponto de provocar aquecimento intenso, provocando lesões internas. Existem alguns estudos que indicam até a possibilidade dos campos eletromagnéticos causarem câncer.

NR 10 – Riscos Elétricos: Condições Atmosféricas – Descarga Atmosférica

A descarga atmosférica, mais conhecida como raio, é um arco elétrico e como tal, gera som, calor, intensos campos eletromagnéticos, além da tensão de passo que estudamos anteriormente. Com tais características não é difícil concluir que ela pode provocar grande destruição.

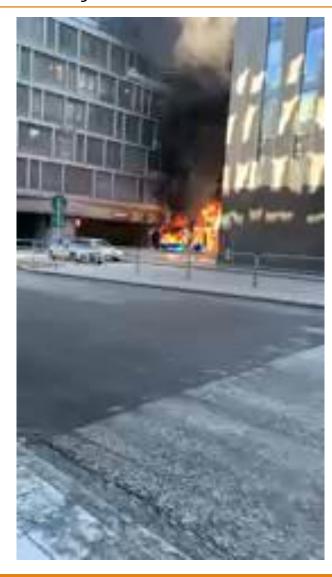
Oficina mecânica pega fogo após ser atingida por raio em Luís Eduardo Magalhães

Corpo de Bombeiros foi acionado para debelar chamas.

O 3 de janeiro de 2021 De Notícias O 0

Oficina mecânica pega fogo após ser atingida por raio em Luís Eduardo Magalhães— Foto: Reprodução/Fernando

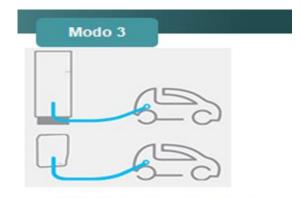
https://bahiamanchetes.com.br/oficina-mecanica-pega-fogo-apos-ser-atingida-por-raio-em-luis-eduardo-magalhaes/

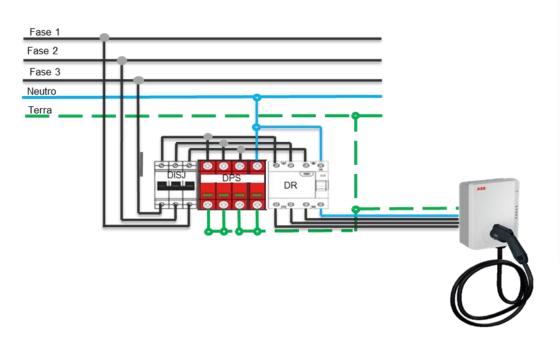


As causas de acidentes podem ser agrupadas em duas categorias, condição insegura e ato inseguro

Prevenção e Combate a Princípio de incêndio

Suporte ao Corpo de Bombeiro para atendimento de acidentes


Posicionamento nas oficinas


Como proceder no caso de uma colisão com o sistema de alta tensão

Adequação da área de recarregamento

- Conexão permanente com a rede por meio de um EVSE, com função piloto e proteções contra choque elétrico;
- Requer um wallbox na parede ou similares, para entregar mais potência e com as proteções e circuitos de comando e controle necessários;
- Máximo 32A / 63A, 220V / 380V (monofásico / trifásico);
- Valores típicos de 3,7kW / 7kW para conexões monofásicas e 11kW / 22kW e até 43kW para conexões trifásicas;

Ônibus elétrico pega fogo ao recarregar na China

Pneus dos VE's – Nova abordagem

1 - TER MAIS DURABILIDADE

Para suportar o torque que os motores elétricos dão as rodas (materiais da composição tem que ser alterados)

2 - SUPORTAR O AUMENTO DE PESO

Esse aumento de peso varia entre 10 a 20% da versão original de motor de combustão interna, pneus normais gastam muito depressa.

3 - REDUZIR A RESISTÊNCIA O ROLAMENTO

Reduzir a força de resistência ao rolamento

4 - NOVO DESENHO DA BANDA DE RODAGEM

Para melhorar a dirigibilidade e abrasão na banda de rodagem, reduzir aquaplanagem e o aumento do torque.

5 - REDUZIR O RUÍDO DO ROLAMENTO

Como o ruído do motor desapareceu, o de rolamento dos pneus passa a ser a maior preocupação na redução de sons no interior do veículo. A redução de ruído pode ser obtida através de técnicas de design e fabricação, como padrões especializados de banda de rodagem e espuma absorvente de som e compostos de borracha.

Fonte: ALBERTO PUGA LEIVAS (aplservtec@yahoo.com)

Pneus dos VE's – Nova abordagem

5 - REDUZIR O RUÍDO DO ROLAMENTO

Como o ruído do motor desapareceu, o de rolamento dos pneus passa a ser a maior preocupação na redução de sons no interior do veículo. A redução de ruído pode ser obtida através de técnicas de design e fabricação, como padrões especializados de banda de rodagem e espuma absorvente de som e compostos de borracha.

... e só para não esquecer!!

OPPS, O ESTEPE SUMIU...

A redução de peso é um dos objetivos na construção dos veículos elétricos, desta forma você vai encontrar um compressor e um tanque de liquido de reparo das rodas no lugar do pneu de estepe.

Fonte: ALBERTO PUGA LEIVAS

Especialistas cooperando para seu sucesso.